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In many cases of technological interest solid boundaries play a direct role in the aerodynamic sound generation 

process and their presence often results in a large increase in the acoustic radiation. A generalized treatment of the 

emission of sound from moving boundaries is presented. The approach is similar to that of Ffowcs Williams and 

Hawkings (1969) but the effect of the surrounding mean flow is explicitly accounted for. The results are used to 

develop a rational framework for the prediction of internally generated aero-engine noise. The final formulas 

suggest some new noise sources that may be of practical significance. 

1. Introduction 

Aeroacoustics was put on a rational basis when Lighthill introduced his acoustic analogy equation in 1952. 

Ffowcs Williams and Hawkings (1969) extended this result to account for the effects of solid boundaries in arbitrary 

motion. More modem approaches to the aerodynamic sound problem are based on the linearized inhomogeneous 

Euler (LIE) equations with the nonlinearity lumped into the inhomogeneous term which, as in the original Lighthill 

approach, are treated as known source terms (Bailly, Lafon, and Candel 1995; Bogey, Bailly, and JuvC 2002; 

Goldstein 1999,2000,2002). Goldstein (2002) showed that the full Navier-Stokes equations can always be recast 

into the form of the linearized Navier-Stokes (LNS) equations but with the viscous stress perturbation replaced by a 

certain generalized Reynolds stress and the heat flux perturbation replaced by a generalized stagnation enthalpy flux. 

. The primary purpose of this paper is to use this general result to derive an extension of the Ffowcs Williams- 

Hawkins (1969) equation that accounts for the effects of a non-uniform mean flow field The resulting general 

formula is then used to develop a sequence of progressively more complex equations for predicting the internally 

generated noise from modern jet engines-with each successive equation requiring less modeling than its predecessor. 

Some potentially important new noise sources are also identified. 
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2. The fundamental equation 

Goldstein (2002) showed that the Navier-Stokes equation 

-+-pvj aP a =o, 
at axj 

a a aqj a 
-(ph, - p ) + - - p  .h =--+-vjcr. .  
at axj O axj  ax j  I/ 

where 

denotes the stagnation enthalpy, h denotes the enthalpy, t denotes the time, x = {x,j2,x3} are Cartesian coordinates, 

p denotes the pressure, p denotes the density, v = {v~,v~,v3} is the fluid velocity, qy is the viscous stress tensor, qi is 

the heat flux vector and the dependent variables satisfy the ideal gas law: 

p =pRT,  h = cpT, (2.5) 

with R = cp - c, being the gas constant, cp and c,, are the specific heats at constant pressure and volume and T the 

absolute temperature, can be recast into the form of the linearized Navier-Stokes equations by dividing the 

dependent variables 

p=p+p‘ ,  p = p + p ’ ,  h=K+h’, v i  =yi+v; ,  (2.6) 

- - -  - -  as well as the viscous terms qj and qi, into their ‘base flow’ components p , p ,  I2 ,v i ,  C T ~ ,  and Fi, and into their 
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‘residual’ components p‘, p’,h‘,vj, cb, and q;,and requiring that the former satisfy the inhomogeneous 

Navier-Stokes equations 

- Do - p = Q ,  
Dt 

_- aF; a Do pvi +-=- T.. + Z - . .  + f. axi axj  ( Y J  Y ) - 1 ’  

- a - 
D -K -!&=a+- H .  -? .  +rig . .  +f4 + T . f .  

O P  0 at Dt axj  ( - J  J Y) I 1 ’  

along with an ideal gas law equation of state, 

- - cP P 
R P  

h = C  T=-=, 

where the operator DJDt is not the usual convective derivative but is defined by 

- Do f=-+-(rj.f) af a 
Dt . at ax j  

for any function f, 

- - 1  
2 

ho = h  +-r2 

(2.1 0) 

(2.1 1) 

(2.12) 

is the base flow stagnation enthalpy, and the ‘sources strengths’ E,, Eo,  and Ej ,  and ‘sources’ Ti, f4 ,  which are 

assumed to be localized, can be arbitrarily specified. 

The LNS equations, which are the governing equations for residual variables, are given by 
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(2.1 3) 

(2.14) 

and 

where y cdc. is the specific heat ratio, the dependent variables p i  and uf are defined by 

Y - 1  2 w 

p i  sp‘+-pv’ +(y-l)H,,, 
2 

the source strengths e6 - zu and e: - e“4 , are defined by 

(2.1 6 )  

(2.1 7) 

(2.1 8) 

(2.1 9 )  

(2.20) 

(2.21) 
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and we have put 

= ~ 
- 
v,, -- 

axj 

(2.22) 

- a?, 
a x j  Vi, - , i = p = 1,2,3 

0, otherwise 

\ 

The five LNS equations (2.13) to (2.15) can be written more compactly by introducing the five dimensional operator 

+=6,,, -+(Y-1)6,43, DL3 Dt + a v [ 3 6 p 4  + J p 5 ) + K p v  (2.23) 

where p, v =1,2,. . .,5, while the Latin indices i, j are restricted to the range 1,2,3. 

a p  = 
0, otherwise I 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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is the base flow speed of sound, the Einstein summation convention is still being used and S,,, is the five 

dimensional Kronecker delta. 

Equations (2.13) to (2.15) now become 

where 

is the five dimensional dependent variable vector and the five dimensional source vector sp is given by 

The vector Greens function gva = (x, tlx, , t o )  for A?/,,, is defined by (Morse and Feshbach, 1953). 

dp,, g"u = 6,LU 6(x - x o  )6(t - t o  1. 

Its adjoint g& = ( x , t l x o , t o )  satisfies (Morse and Feshbach,1953 and Tam and Auriault, 1998) 

1;" d a  = Spa S(" - x o  )s(t - t o )  

(2.28) 

(2.29) 

(2.30) 

(2.3 1) 

(2.32) 

where 
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- 
D 
Dt 

d& 

and 

denotes the ordinary convective derivative. 

- 
D a - a  
Dt at axi = + v i -  

is easy to show from 

r 

(2.33) 

(2.34) 

is that 

for any two five dimensional vectors ( v I 1 ]  and ( u V } .  

We expect gvo(x,tlx, , t o )  to vanish as t -+ 00 for all finitex when the base flow (2.7j to (2.9) is globally 

stable and causality should insure that it vanishes as t -+ -.We, therefore, require that 

(2.35) 

(2.36) 

since it is reasonable to suppose that g$ will exhibit similar behaviour. 

Now let v(t) denote an arbitrary region of space bounded by the (in general moving) surface S(t) and let A = 

{Ai} be an arbitrary vector and @(x,t) an arbitrary function defined on v(t). Then the divergence theorem shows that 

(2.37) 

and the three-dimensional Leibniz's rule (Goldstein 1976) shows that 
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(2.38) 

where ri = { G i }  is the unit outward drawn normal to S and V s  = {yl”] is the corresponding surface velocity at any 

point x of S. 

Setting v, equal to g i K  (x,t lx, ,  t o )  in (2.35), letting u, be the solutions to (2.28), using (2.36) to (2.38) and 

omitting terms that are negligibly small as T goes to plus or minus infinity, shows that 

where T denotes a very large but finite time interval. This formula expresses the solution to equation (2.28) in 

terms of the volume source distribution sp and the values of {u,} on some arbitrarily moving surface S(t). However, 

the adjoint vector Greens function g i K  is not uniquely determined by (2.32). and can be required to satisfy certain 

boundary conditions on a portion, say S,(t), of the surface S(f) that encloses a region, say vl(t), that contains v(t) (see 

fig. 1). 

We could also have chosen u,(x,t) in (2.39) to be the Greens fimction gKa (x, t lx l ,  t l  ) . In which case s, would 

denote JPK S(x - x , ) 6 ( t  - tl  ) and (2.39) would show that g, and g i K  satisfy the reciprocity relation 

(2.40) 

if 
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(2.41) 

on S,(t) and g, and gi ,  satisfy the impedance boundary conditions 

(2.42) 

and 

for all x on S, ( f )  and x, in v,(t). This would almost certainly be the case if SI were a large stationary sphere whose 

radius approaches infinity (see fig. 1). In which case we would refer to g,,k and g i K  as free space Green’s functions. 

Again interpreting uk to be a solution to (2.28) (which we shall do for the remainder of the paper), inserting 

(2.30) into (2.39) and using the divergence theorem (2.37) to transfer the spatial derivatives to the Greens function 

shows that 

where we have put 

(2.44) 

(2.45) 

(2.46) 

and set 
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(2.47) 

Inserting the definitions (2.6) and (2.16) to (2.21) into (2.46) shows that 

which can be further rearranged to obtain 

We now require that the base flow velocity satisfy the slip boundary conditions (2.41) on the portion SI of S 

where gtK satisfies the boundary condition (2.42) and consider only those flows that satisfy the impedance 

boundary condition 

(2.50) 

on this surface. The remaining portion, say S,(t), of S(r) will, in most cases, be a solid surface, which means that 

n ^ .  J ( J  v .  -V.s J )  = o  (2.51) 
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there. It is worth noting that the boundary conditions (2.41) and (2.52) are appropriate even when the flow is 

inviscid. It now follows from (2.18) to (2.20), (2.41), (2.42), (2.46), and (2.49) to (2.52) that equation (2.44) 

becomes 

where the five dimensional surface stresses are defined by 

v = 4  

v = 5  

(2.53) 

(2.54) 

(2.55) 

(2.56) 

This exact equation is the main result of the paper. It can also be rewritten in terms of the direct Greens function 

g, by using the reciprocity relation (2.40), which must then satisfy the impedance boundary condition (2.43). It is 
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usually only necessary to consider the fourth component of this equation, since aeroacoustics is primarily concerned 

with predicting pressure fluctuations. 

Notice that the inviscid component of the normal surface stress ~ $ 6 ~  will vanish on SI when this surface is 

stationary and impermeable. In the more general case, it demonstrates that acoustic liners can, by their very 

presence, introduce new sources of sound. The first three components of € $ S j  represent a normal surface force on 

So and correspond to what is usually referred to as a surface dipole (see discussion at the end of 53.1 below). 

The first two terms in the fourth component can be rewritten as 

and it follows from (2.52) that 

(2.57) 

is the normal component of the surface velocity relative to the base flow velocity. Then since p ' ( y  - 1) / is likely 

to be small compared to unity, these two terms plus the fourth component of are probably best interpreted as a 

surface displacement source. 

The volume source e ;  - zq is basically of the quadrupole type with the first three components corresponding 

to the fluctuating Reynolds stress and the fourth component corresponding to a fluctuating stagnation enthalpy flux. 

Gliebe and Mani (1999, p. 3) recently argued that the volume quadrupole is likely to be the dominant source of 

turbulence blade row interaction noise. This would suggest that the fluctuating enthalpy flux should play an 

important role in the generations of turbine noise. 

3. Application to internally generated aero-engine noise 

The most important application of (2.53) is to the prediction of the noise generated inside a turbojet engine. In 

which case, it would be appropriate to associate the finite part of SI with the surface of the engine nacelle and 

perhaps the internal (axial) boundary of the flow path. The remaining portion of So of S would most appropriately 
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be associated with the (fixed and rotating) blade surfaces, for fan, compressor, andor turbine noise prediction 

studies . 

3.1 The infinite duct model 

The simplest fan, compressor, andor turbine noise models assume that the (rotating and stationary) blade rows 

are embedded in an infinite straight duct (either circular or annular) in which there is a parallel (i.e., uni-directional 

transversely sheared) mean flow (Goldstein, 1976; Gliebe and Mani 1999). This corresponds to setting the arbitrary 

source strengths Tu, H ,  , and f i j  and source terms 7, to zero in (2.7) to (2.9) which then reduce to the usual Euler 

equations, which in turn posses the steady solution 

- -  

that satisfies the normal velocity boundary condition (2.41) on the duct walls. 

It can be verified by direct substitution that the n= 4 component of (2.32) can be expressed in terms of a single 

scalar Greens function G' (x, tjx, , to ) by 

a D G ~  +2--) a v a G a  
axi Dt axi ax, 

d 4  = o  

where e satisfies the adjoint wave equation 

0 2 G "  
d 4  =- 

Dt 
(3.3) 

(3.4) 

L ~ G "  =6(x-x , )6 ( t - to )  
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with (see Tam and Auriault 1998) 

along with the impedance boundary conditions (2.42) on the duct surface. To avoid getting into a discussion of the 

liner generated sound, we consider only the hard walled case Z + a. Then the fourth component of (2.53) becomes 

where 

a - [ a D G ~  au a G a )  au O2G" 
(y-1)yU. =--c2 - - +2- - +6;]--(y-l)- 

K~ axi axi Dt axi axI axj Dt 

and 

(3.7) 

Most turbomachinery analyses assume that the mean flow and sound speed are uniform (Goldstein 1976; Gliebe and 

Mani 1999). In which case (3.6) to (3.8) become 
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where 

(3.10) 

satisfies a second order wave equation. 

This should be compared with equation (4.12) of Goldstein (1976) which is derived from Lighthill's result. The 

N 

only difference is that the volume quadrupole source Jii (p ' -  c2 p') a2G* in the latter is replaced by the axi axj 

a 1 DG* 
volume dipole source - - N - e i j  in the former, which induces an additional factor in the volume 

a x j  c 2  Dt 

displacement surface source. This difference is due to the fact that the basic differential equations (2.13) to (2.15) on 

which this analysis is based, do not lead to Lighthill's equation in the limit when the base flow and sound speed 

become constant, but they do, with some slight rearrangement, reduce to a version of Lighthill's equation originally 

derived by Lilley (1974). Lighthill originally suggested that the inconvenient Jii ( p ' -  c2 p')  term that appeared in 
N 

his stress tensor should be associated with non-isentropic density fluctuations, which are presumably produced by 

viscous effects and are therefore likely to be negligible. However, Lilley (1 974) pointed out that this term also has a 

component associated with isentropic density fluctuations, which can be important when the mean density (i.e., 

temperature) is non-constant, and proceeded to derive an equation which separates out the two components. 

Unfortunately, the resulting source term contained a dipole component which corresponds to the dipole source term 

that appears in the present formulation. Lilley (1996) applied his result to the prediction of jet noise. He modeled the 

e i j  source by using the strong Reynolds analogy4hough he did not call it that (see Smits and Dussauge 1996, pp. 
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125, 130) -and was able to obtain a good agreement with the hot jet data available at that time-even though the 

strong Reynolds analogy, which is quite accurate for boundary layer-type flows, does not seem to work very well for 

jets and free shear layers (Smits and Dussauge 1996). This term should as noted above play an important role in the 

prediction of turbine noise. Finally it is worth noting that the present results justify the source interpretation given at 

the end of $2. 

3.2 More general steady base flows 

As noted by Gliebe and Mani (1999, p. 63), a major difficultly with the parallel flow model is that it cannot 

account for the large turning of the mean flow that occurs downstream of the blade rows. This difficulty, as well as 

a number of others, can be avoided by taking the base flow to be the actual mean flow field through the engine. 

This choice of base flow has the additional benefit of allowing the observation point in (2.53) to be moved into the 

far-field, where one is actually interested in calculating the sound. 

The over bar on the dependent base flow variables then denotes the time average 

(3.1 1) 

where the dot is a place holder for p, vi, p ,  and h, which must be set to zero during the time that the blade passes 

through the point x when averaging within the blade passages of a rotating blade row. 

(3.12) 

denotes a Favre averaged quantity (Lele 1994) for all variables except io, which is defined by (2.12). Notice that 

equation (2.10) is completely consistent with the ideal gas lawp = pRTwhen the tilde is defined in this fashion. 

The time derivatives now drop out of the base flow equations (2.7) to (2.9), which do not, of course, form a 

- -  - 
closed system. The source strengths Tu, H,, and H j  are given by 

(31 3) 
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which can be written more compactly as 

and 

- 1 -  2 H0 =- -P (v ’ )  I 2 

The dipole volume source &, are given by (see appendix A) 

and 

N 

(3.14) 

(3.1 5) 

(3.1 6 )  

(3.1 7) 

(3.1 8) 

(3.19) 

(3.20) 

where S2 is the angular rotational frequency of the turbomachine ts(x) is the time when the blade surface has reached 

the point x (measured from some fixed reference time), V,, is the normal surface velocity, 
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(3.21) 

is the normal blade force and 

(3.22) 

is the normal heat flux. 

The base flow equations arc now the ordinary RANS equations with additional dipole source terms. These 

equations are, of course, not closed and require the introduction of some sort of model relating the source terms to 

the mean flow variables '3,, p, p, and h,  and/or their derivative. The source strengths (3.16) to (3.1 8) consist of a 

deterministic component due to the periodic motion of the blades and a random component, which is usually 

modeled by the Boussinesq approximation (Speziale 1991; Speziale and So 1998) 

- 

(3.23) 

with a similar result for the enthalpy fluxes. The deterministic component, as well as the volume dipole sources, 

were first modeled by Adamczyk (1985), who also developed a computer code for obtaining an approximation to the 

relevant solution to the RANS equations. 

3.3 Unsteady radiating base flows 

The ultimate objective of internal engine aeroacoustics is to directly calculate the noise by using large scale 

numerical simulation (DNS). This approach may eventually succeed in predicting the periodic components of the 

sound field (i.e., the engine order tones) but it is unlikely to be successful in predicting the broad band component, 

which would require a complete knowledge of the actual turbulent flow within the engine. It is therefore important 

to develop an internally consistent framework that would enable the direct calculation of the pure tones and still use 

an acoustic analogy-type approach to determine the broad band sound. This can be accomplished by taking the base 

flow equations (2.7) to (2.9) to be the filtered or phase averaged Navier-Stokes equations. The over bars on the base 

flow variables would then denote the filtered variables 
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(3.24) 

where a i s  defined in the previous subsection and f can again by any of the dependent variables p, vi, p,  and h within 

the flow and should be set to zero inside the blades when averaging within a moving blade row. This filtering (or 

averaging) process will pass only the steady and periodic components of the motion. 

Eo, and The tilde is still defined by (3.12) and the base flow source terms are still given by (3.13) to 

(3.15) but not be (3.16) to (3.18). They account for the effect of the random turbulence on the periodic flow through 

the turbomachine and must again be modeled. It would probably by appropriate to still use the Boussinesq model 

(3.17) for this purpose since the Reynolds stresses no longer contain a deterministic component. 

The pure tones can be calculated by solving these equations subject to no-slip boundary conditions on the blade 

surfaces S,(t) together with appropriate boundary conditions on the duct wall surfaces SI. For simplicity, we again 

consider only hard walled ducts so that (2.41) still holds there. 

The remaining random component of the sound field is given by the fundamental equation (2.55). However, 

kiU; now vanishes at all points o fS  and it is reasonable to suppose that fii Tu and i j  i?4j are zero there as well-so 
- 

that, in the absence of viscocity, the only remaining surface source is the blade surface dipole 

However, the Gliebe-Mani (1999) arguments suggest that the volume source terms will also make important 

contributions. The adjoint Greens function must, of course, satisfy (2.42) with Z = co. 

Conclusions 

A generalized integral formula for predicting aerodynamic sound generation in the presence of solid surfaces 

and non-uniform surrounding flow has been derived. It is used to develop a set of increasingly more accurate models 

for predicting the internally generated aircraft engine noise-with each successive model being more 

computationally intensive than its predecessor. The simplest model corresponds to embedding the turbomachinery 
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blade rows in infinite straight duct containing a uniform mean flow. The general result suggests that there are some 

new noise sources that have not been previously considered. 
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Appendix A: Derivation of volume dipole sources 

Multiplying (2.2) by the Heaviside function H(F), where F(x,t) is negative inside the blades and positive 

outside, integrating by parts and noting that 

aF JF 
-+vj--=o 
at axi 

on the moving blade surface shows that 

a a a a aF 
--Hpi +-Hp.v. +--Hp=-HHoii +6(F)-(p6ij  -q) 
at axj axi axj ax, 

Integrating with respect to time, using (3.1 1) and (3.12) and comparing with (2.8) shows that 

where we have used (2.52), (3.21), (AI) and the fact that 

fii =?,ii""' axi axj ax, 

to obtain the last result. Integrating over the Delta function and noting that the blade surface passes each point x 

within the rotating blade row once per revolution yields (3.19). Equation (3.20) can be derived from (2.3) in a 

similar fashion. 
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